2023
DOI: 10.1101/2023.05.01.538996
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Variance Analysis of LC-MS Experimental Factors and Their Impact on Machine Learning

Abstract: Background Machine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in predictive mass spectrometry (MS) for enhancing the data processing pipeline from raw data analysis to end-user predictions and re-scoring. ML models need large-scale datasets for training and re-purposing, which can be obtained from a range of public data repositories. However, applying ML to public MS datasets on larger scales is challenging, as they vary widely in terms of data acquisition metho… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?