Concerns over the potential for infectious prion proteins to contaminate human biologics and biotherapeutics have been raised from time to time. Transmission of the pathogenic form of prion protein (PrP(Sc)) through veterinary vaccines has been observed, yet no human case through the use of vaccine products has been reported. However, iatrogenic transmissions of PrP(Sc) in humans through blood components, tissues and growth hormone have been reported. These findings underscore the importance of reliable detection or diagnostic methods to prevent the transmission of prion diseases, given that the number of asymptomatic infected individuals remains unknown, the perceived incubation time for human prion diseases could be decades, and no cure of the diseases has been found yet. A variety of biochemical and molecular methods can selectively concentrate PrP(Sc) to facilitate its detection in tissues and cells. Furthermore, some methods routinely used in the manufacturing process of biological products have been found to be effective in reducing PrP(Sc) from the products. Questions remain unanswered as to the validation criteria of these methods, the minimal infectious dose of the PrP(Sc) required to cause infection and the susceptibility of cells used in gene therapy or the manufacturing process of biological products to PrP(Sc) infections. Here, we discuss some of these challenging issues.