Variants of the Domination Number for Flower Snarks
Ryan Burdett,
Michael Haythorpe,
Alex Newcombe
Abstract:We consider the flower snarks, a widely studied infinite family of 3-regular graphs. For the Flower snark Jn on 4n vertices, it is trivial to show that the domination number of Jn is equal to n. However, results are more difficult to determine for variants of domination. The Roman domination, weakly convex domination, and convex domination numbers have been determined for flower snarks in previous works. We add to this literature by determining the independent domination, 2-domination, total domination, connec… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.