The present study investigates the influence of selected infant and maternal factors on the energy and macronutrient composition of mature human milk (HM). The study enrolled 77 mothers at 4–8 weeks postpartum. Each mother provided 1 sample of HM. Each extracted HM sample was formed by mixing four subsamples of HM, each of which were obtained in one predefined 6-h periods of the day. Among maternal factors, the analysis included: anthropometric data before and after pregnancy; weight gain in pregnancy; body composition, assessed using the Maltron BioScan 920-II to analyze bioimpedance; and dietary intake, assessed with three-day dietary records. Among the neonatal factors, birth weight and length, number of daily feedings and type of delivery were included. The composition of HM, including energy content, protein, fat and carbohydrate concentrations, was analyzed using the Miris human milk analyzer. Pearson’s and Spearman’s correlation coefficients and multivariable logistic regression models were used to analyze the association between the selected maternal and infant factors and HM milk composition. It was found that total protein content of HM was correlated with pre-pregnancy BMI (Spearman rho = 0.238; p = 0.037), current lean body mass (Spearman rho = −0.293, p = 0.01) and total water content (Spearman rho = −0.315, p = 0.005). Carbohydrates were the only macronutrients whose composition was significantly affected by the infant factors. It was reported that higher carbohydrate content was associated with male sex (OR = 4.52, p = 0.049). Our results show that maternal and infant factors, especially maternal pre-pregnancy and current nutritional status and infant sex, interact and affect HM composition, suggesting that macronutrient and energy content in HM may be determined in pregnancy and may have unique compositional profile for every mother–infant dyad.