“…Despite the link between positive systems and variation-diminishing operators, it was not until very recently that OVD k−1 and k-positivity have been studied as properties of LTI systems when k > 1. New results, with applications in non-linear systems analysis and model order reduction, have so far focused on two distinct cases: the external case [16,17,15], where OVD k is considered as a property of system convolution operators; and related autonomous cases [26,1], which concern k-positivity of the state-space matrix A with b = 0. A main result of [17] characterizes (externally) Hankel k-positive systems, i.e., systems with OVD k−1 Hankel operators, in terms of the external positivity of all so-called j-compound systems, 1 ≤ j ≤ k, whose impulse responses are given by consecutive j-minors of the Hankel operator's matrix representation.…”