Products manufactured from mass-cultured house dust mites, currently commercialized for the diagnosis and immunotherapy of allergy, are heterogeneous in terms of allergen composition and thus present concerns to regulatory authorities. The most abundant species, Dermatophagoides pteronyssinus (Trouessart) (Astigmata: Pyroglyphidae), produces 19 allergenic proteins. Many of these are putatively involved in mite digestive physiology and metabolism. This study aimed to evaluate the effects of mite-rearing media on allergen production. Mites were adapted to feed on culture media supplemented with proteins, lipids, carbohydrates or beard shavings, and collected to quantify major allergens (Der p 1 and 2) by immunodetection, transcription of allergen genes by real-time quantitative polymerase chain reaction, and allergen-related enzymatic activities. All culture media significantly affected the content of major allergens. Modification of macronutrients in the diet produced minor effects on the transcription of allergen genes, but significantly altered mite allergen-related activities. The most remarkable impacts were detected in mites feeding on beard shavings and were reflected in reductions in the content of major allergens, alterations in the transcription of nine allergen genes, and changes in eight allergen-related activities. These results demonstrate the importance of culture media to the quality and consistency of mite extracts used for pharmaceuticals, and highlight the need to further elucidate allergen production by mites in the laboratory and in domestic environments.