The combination of UAV-LiDAR and LiDAR-SLAM (Simultaneous Localization and Mapping) technology can overcome the scanning limitations of different platforms and obtain comprehensive 3D structural information of forest stands. To address the challenges of the traditional registration algorithms, such as high initial value requirements and susceptibility to local optima, in this paper, we propose a high-precision, robust, NDT-VGICP registration method that integrates voxel features to register UAV-LiDAR and LiDAR-SLAM point clouds at the forest stand scale. First, the point clouds are voxelized, and their normal vectors and normal distribution models are computed, then the initial transformation matrix is quickly estimated based on the point pair distribution characteristics to achieve preliminary alignment. Second, high-dimensional feature weighting is introduced, and the iterative closest point (ICP) algorithm is used to optimize the distance between the matching point pairs, adjusting the transformation matrix to reduce the registration errors iteratively. Finally, the algorithm converges when the iterative conditions are met, yielding an optimal transformation matrix and achieving precise point cloud registration. The results show that the algorithm performs well in Chinese fir forest stands of different age groups (average RMSE—horizontal: 4.27 cm; vertical: 3.86 cm) and achieves high accuracy in single-tree crown vertex detection and tree height estimation (average F-score: 0.90; R2 for tree height estimation: 0.88). This study demonstrates that the NDT-VGICP algorithm can effectively fuse and collaboratively apply multi-platform LiDAR data, providing a methodological reference for accurately quantifying individual tree parameters and efficiently monitoring 3D forest stand structures.