Mineral nitrogen fertilization has improved crop yield over the last century but has also caused air and water pollution. Reduction of nitrogen inputs and maintaining high yields are therefore essential to ensure a more sustainable agriculture. Improving the nitrogen use efficiency (NUE) of crops is therefore needed. Rapeseed, Brassica napus, depends on nitrogen fertilization due to its low NUE, with the ratio of plant nitrogen content to nitrogen supplied often not exceeding 60 %. Here, we review the major phenotypic traits associated with NUE in B. napus, with special emphasis on winter oilseed rape. We discuss the genetic diversity available and potential breeding strategies. The major points are the following: (1) rapeseed seed yield elaboration is complex, with overlapping phases of nitrogen uptake and remobilization during the crop cycle; (2) traits related to nitrogen uptake, such as root length and the amount of nitrogen absorbed after flowering, and traits related to nitrogen remobilization, such as the "staygreen" phenotype, have been identified as possible levers to improve NUE in rapeseed; (3) a substantial body of studies investigating the genetic control of NUE traits have already published and potential candidate genes identified; and (4) rapeseed genetic diversity may be enriched by exploiting interpopulation genetic variation and the closely related gene pools of Brassica rapa and Brassica oleracea.