As the human population continues to expand, increased encroachment on natural landscapes and wildlife habitats is expected. Organisms able to acclimate to human-altered environments should have a selective advantage over those unable to do so. Over the past two decades, bats have increasingly begun to roost and raise offspring in spaces beneath pre-cast concrete bridges. Few studies have examined the health or fitness of individuals living in these anthropogenic sites. In the present study, we examined birth size and postnatal growth, as surrogates of reproductive success, in Brazilian free-tailed bat pups born at a natural and a human-made roost. Based on putative stress-related conditions (noise from vehicular traffic, chemical pollutants and a modified social environment) present at bridges, we predicted that bats at these sites would have reduced reproductive success. Contrary to our prediction, pups born at a bridge site were on average heavier and larger at birth and grew faster than those born at a cave site. Also, both birth size and growth rates of pups differ between years. We attribute observed differences to a combination of roost-related conditions (i.e. roost temperature and proximity to foraging areas), climate and maternal effects with larger mothers raising larger pups. Thus, some bridge roosts, at least in the short term, are suitable, and in some cases may provide better conditions, for raising young bat pups than cave roosts.