Offspring size-number trade-off is a critical component of life-history theory and is important for further understanding the reproductive strategies of animals. The relationship between this trade-off and maternal size has been explored in several turtle species, except for the Asian yellow pond turtle, Mauremys mutica. To investigate how the maternal condition affects offspring size and number, we explored the relationships among the maternal body size and the number and size of cultured M. mutica hatchlings using a 4-year dataset. Our results showed that different females not only produced different sizes of offspring but also produced different numbers of offspring. No trade-off in egg size number was detected. According to regression analysis, we did not find that the maternal body size significantly influenced the offspring mass; however, we detected that the offspring size was significantly correlated with the clutch size and maternal age. The mean body mass of offspring increased with maternal age, and the clutch size varied significantly over four years, which was correlated with offspring size, maternal body size and age. However, the number of offspring per female increased with the maternal plastron length rather than age. Our results were inconsistent with the optimal offspring size theory in that females did not increase their offspring size but rather increased the offspring number to increase their fitness, which will also provide a basis for the efficient cultivation management of turtles.