Abstract. Root systems architecture (RSA) and size properties are essential determinants of plant performance and need to be assessed in high-throughput plant phenotyping platforms. Thus, we tested a concept that involves near-infrared (NIR) imaging of roots growing along surfaces of transparent culture vessels using special long pass filters to block their exposure to visible light. Two setups were used to monitor growth of Arabidopsis, rapeseed, barley and maize roots upon exposure to white light, filter-transmitted radiation or darkness: root growth direction was analysed (1) through short-term cultivation on agar plates, and (2) using soil-filled transparent pots to monitor long-term responses. White light-triggered phototropic responses were detected for Arabidopsis in setup 1, and for rapeseed, barley and maize roots in setups 1 and 2, whereas light effects could be avoided by use of the NIR filter thus confirming its suitability to mimic darkness. NIR imagederived 'root volume' values correlated well with root dry weight. The root system fractions visible at the different pot sides and in different zones revealed species-and genotype-dependent variation of spatial root distribution and other RSA traits. Following this validated concept, root imaging setups may be integrated into shoot phenotyping facilities in order to enable root system analysis in the context of whole-plant performance investigations.