Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Music therapy is an effective tool to slow down the progress of dementia since interaction with music may evoke emotions that stimulates brain areas responsible for memory. This therapy is most successful when therapists provide adequate and personalized stimuli for each patient. This personalization is often hard. Thus, Artificial Intelligence (AI) methods may help in this task. This paper brings a systematic review of the literature in the field of affective computing in the context of music therapy. We particularly aim to assess AI methods to perform automatic emotion recognition applied to Human-Machine Musical Interfaces (HMMI). To perform the review, we conducted an automatic search in five of the main scientific databases on the fields of intelligent computing, engineering, and medicine. We search all papers released from 2016 and 2020, whose metadata, title or abstract contains the terms defined in the search string. The systematic review protocol resulted in the inclusion of 144 works from the 290 publications returned from the search. Through this review of the state-of-the-art, it was possible to list the current challenges in the automatic recognition of emotions. It was also possible to realize the potential of automatic emotion recognition to build non-invasive assistive solutions based on human-machine musical interfaces, as well as the artificial intelligence techniques in use in emotion recognition from multimodality data. Thus, machine learning for recognition of emotions from different data sources can be an important approach to optimize the clinical goals to be achieved through music therapy.
Music therapy is an effective tool to slow down the progress of dementia since interaction with music may evoke emotions that stimulates brain areas responsible for memory. This therapy is most successful when therapists provide adequate and personalized stimuli for each patient. This personalization is often hard. Thus, Artificial Intelligence (AI) methods may help in this task. This paper brings a systematic review of the literature in the field of affective computing in the context of music therapy. We particularly aim to assess AI methods to perform automatic emotion recognition applied to Human-Machine Musical Interfaces (HMMI). To perform the review, we conducted an automatic search in five of the main scientific databases on the fields of intelligent computing, engineering, and medicine. We search all papers released from 2016 and 2020, whose metadata, title or abstract contains the terms defined in the search string. The systematic review protocol resulted in the inclusion of 144 works from the 290 publications returned from the search. Through this review of the state-of-the-art, it was possible to list the current challenges in the automatic recognition of emotions. It was also possible to realize the potential of automatic emotion recognition to build non-invasive assistive solutions based on human-machine musical interfaces, as well as the artificial intelligence techniques in use in emotion recognition from multimodality data. Thus, machine learning for recognition of emotions from different data sources can be an important approach to optimize the clinical goals to be achieved through music therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.