2014
DOI: 10.1016/j.difgeo.2014.08.001
|View full text |Cite
|
Sign up to set email alerts
|

Variation of Hodge structure for generalized complex manifolds

Abstract: A generalized complex manifold which satisfies the $\partial \overline{\partial}$-lemma admits a Hodge decomposition in twisted cohomology. Using a Courant algebroid theoretic approach we study the behavior of the Hodge decomposition in smooth and holomorphic families of generalized complex manifolds. In particular we define period maps, prove a Griffiths transversality theorem and show that for holomorphic families the period maps are holomorphic. Further results on the Hodge decomposition for various special… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
2

Year Published

2015
2015
2020
2020

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 25 publications
0
4
0
2
Order By: Relevance
“…2.1 广义 Hermite 流形 本小节介绍紧致广义 Hermite 流形的基本定义和性质, 具体内容可参见文献 [3][4][5][6][7]. 首先, 设 X 2n 为一个光滑流形, 其实维数为 dim R X = 2n.…”
Section: 预备知识unclassified
See 2 more Smart Citations
“…2.1 广义 Hermite 流形 本小节介绍紧致广义 Hermite 流形的基本定义和性质, 具体内容可参见文献 [3][4][5][6][7]. 首先, 设 X 2n 为一个光滑流形, 其实维数为 dim R X = 2n.…”
Section: 预备知识unclassified
“…本小节介绍紧致广义 Hermite 流形形变的性质, 具体内容可参见文献 [3,5,9,[14][15][16][17]. 首先, 关于广 义复结构的形变, 由 Kodaira-Spencer-Kuranishi 理论 [18] , 对于任意的紧致广义复流形 X, 存在一个包 含 [3,4] :…”
Section: 紧致广义 Hermite 流形形变的性质unclassified
See 1 more Smart Citation
“…Let (M, J) be a compact H-twisted generalized Calabi-Yau manifold. Then there exists a globally L 2 convergent power series which determines the deformation in t < 1 4ac , (t)ρ 0 =…”
Section: Kang Weimentioning
confidence: 99%
“…When J = J + is part of a generalized Kähler structure, the canonical line bundle generates the generalized Hodge decomposition of the twisted de Rham complex (Ω * (M ), d γ ) via the spinor actions of J ± ( [12] and Baraglia [5]). More precisely, let…”
Section: Generalized Kähler Geometrymentioning
confidence: 99%