The ionosonde is widely used for detecting electron density profiles below the F2 peak altitude. Extracting precise profiles from ionograms is crucial, as it serves as a significant data source for ionospheric studies and applications. In our study, we utilized the ray tracing profile inversion method (RTPI) to derive more realistic electron density profiles from the ionosonde observations. By comparing the electron density profiles inverted by RTPI method with and without geomagnetic field against the profiles observed by Incoherent Scatter Radar (ISR) plasma lines, we validated the high precision of the RTPI with magnetic field effect method. The results showed that the average height difference and average peak height difference between profiles inverted by RTPI and plasma line observations are less than 10 and 5 km, respectively. Additionally, we quantified the errors associated with the geomagnetic field effect. It would cause an ∼8–10 km overestimation in true height and a ∼10%–15% underestimation in electron density if the geomagnetic field effect is not considered. These errors induced by the magnetic field accumulate with the frequency of the radio waves. Moreover, we conducted a comparative analysis of simulated echo traces using profiles with different E‐layer shapes. It was demonstrated that the key parameters of the bottom structure have a significant impact on ionogram retrieval, while the E‐layer shape has negligible influence on inversion. Furthermore, we analyzed echo traces simulated using ray tracing with and without collision. The collision effect has weak effect on the delay of the radio waves.