Of the computational models of the cervical spine reported in the literature, not one takes into account the changes in muscle paths due to the underlying vertebrae. Instead, all model the individual muscle paths as straight-line segments. The major aim of this study was to quantify the changes in muscle moment arm, muscle force and joint moment due to muscle wrapping in the cervical spine. Five muscles in a straight-line model of the cervical spine were wrapped around underlying vertebrae, and the results obtained from this model were compared against the original. The two models were then validated against experimental and computational data. Results show that muscle wrapping has a significant effect on muscle moment arms and therefore joint moments and should not be neglected.