In the present study, free vibration of magnetostrictive sandwich composite micro plate with magnetostrictive core and composite face sheets are investigated. The modified couple stress theory is taken into account so as to consider the small scale effects. The surrounding elastic medium is simulated as visco-Pasternak foundation to study the effects of both damping and shear effects. Using energy method, Hamilton’s principle and first-order shear deformation theory, the governing equations of motion and related boundary conditions are obtained. Finally, the differential quadrature method is employed to analysis the vibration of magnetostrictive sandwich composite micro plate. In this regard, the dimensionless frequency are plotted to study the effects of small scale parameter, surrounding elastic medium, magnetic field, composite fiber angle, aspect ratio, thickness ratio, and boundary conditions. The results indicate that the magnetic field and composite fiber angle play a key role in the dimensionless frequency of magnetostrictive sandwich composite micro plate. The obtained results in this article can be used to design sensors and actuators, aerospace industry, and control of vibration response of systems.