2023
DOI: 10.1111/bmsp.12308
|View full text |Cite
|
Sign up to set email alerts
|

Variational Bayes inference for hidden Markov diagnostic classification models

Abstract: Diagnostic classification models (DCMs) can be used to track the cognitive learning states of students across multiple time points or over repeated measurements. This study developed an effective variational Bayes (VB) inference method for hidden Markov longitudinal general DCMs. The simulations performed in this study verified the validity of the proposed algorithm for satisfactorily recovering true parameters. Simulation and applied data analyses were conducted to compare the proposed VB method to Markov cha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2
1

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 101 publications
0
4
0
1
Order By: Relevance
“…In the HM-DCM, model parameters depend on the choice of a measurement model. For example, Yamaguchi and Martinez (2023) consider the general DCM as the measurement model. In the setting, the probability of observing X ijt = x ijt is given as…”
Section: Hidden Markov Dcmmentioning
confidence: 99%
See 3 more Smart Citations
“…In the HM-DCM, model parameters depend on the choice of a measurement model. For example, Yamaguchi and Martinez (2023) consider the general DCM as the measurement model. In the setting, the probability of observing X ijt = x ijt is given as…”
Section: Hidden Markov Dcmmentioning
confidence: 99%
“…lkt and g j2tl = K k=1 α q jkt lkt . Under this setting, the guessing and slip parameters correspond to the item parameter θ jht with θ j1t = guessing jt and θ j2t = 1 − slip jt (Yamaguchi and Martinez 2023).…”
Section: Hidden Markov Dcmmentioning
confidence: 99%
See 2 more Smart Citations
“…et al, 2017, pp.668-670) . また,正則化推定法はアトリビュート階層構造の推定(Wang and Lu, 2021;Ma et al, 2023b) や縦断的 DCM(e.g.,Yamaguchi and Martinez, 2023)におけるアトリビュート習得パ タンの遷移で表される学習軌跡の推定(Wang, 2021) ,Q 行列の推定(Chen et al, 2020(Chen et al, , 2015Xu and Shang, 2018) Θ, π) + log(p(Θ)) + log(p(π))} とパラメタの推定値を得る方法である.ここで,log(p(Θ)) と log(p(π)) はそれぞれ項目 パラメタと混合比率パラメタの対数事前確率密度である.例えば,θ jh の事前分布と してパラメタが a 0 jh > 0, b 0 jh > 0 であるベータ分布,π の事前分布としてパラメタが…”
unclassified