2020
DOI: 10.1109/access.2020.3008854
|View full text |Cite
|
Sign up to set email alerts
|

Variational Bayesian Group-Level Sparsification for Knowledge Distillation

Abstract: Deep neural networks are capable of learning powerful representation, but often limited by heavy network architectures and high computational cost. Knowledge distillation (KD) is one of the effective ways to perform model compression and inference acceleration. But the final student models remain parameter redundancy. To tackle these issues, we propose a novel approach, called Variational Bayesian Group-level Sparsification for Knowledge Distillation (VBGS-KD), to distill a large teacher network into a small a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?