Quantum many-body scars, long-lived excited states of correlated quantum chaotic systems that evade thermalization, are of great fundamental and technological interest. We create novel scar states in a bosonic 1D quantum gas of dysprosium by stabilizing a super-Tonks-Girardeau gas against collapse and thermalization with repulsive long-range dipolar interactions. Stiffness and energy density measurements show that the system is dynamically stable regardless of contact interaction strength. This enables us to cycle contact interactions from weakly to strongly repulsive, then strongly attractive, and finally weakly attractive. We show that this cycle is an energy-space topological pump (due to a quantum holonomy). Iterating this cycle offers an unexplored topological pumping method to create a hierarchy of quantum many-body scar states.