The availability of X‐ray light sources with increased resolution and intensity has provided a foundation for increasingly sophisticated experimental studies exploiting the spectroscopy of core electrons to probe fundamental chemical, physical, and biological processes. Quantum chemical calculations can play a critical role in the analysis of these experimental measurements. The relatively low computational cost of density functional theory (DFT) and time‐dependent density functional theory (TDDFT) make them attractive choices for simulating the spectroscopy of core electrons. An overview of current developments to apply DFT and TDDFT to study the key techniques of X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, X‐ray emission spectroscopy, and resonant inelastic X‐ray scattering is presented. Insight into the accuracy that can be achieved, in conjunction with an examination of the limitations and challenges to modeling the spectroscopy of core electrons with DFT is provided.
This article is categorized under:
Electronic Structure Theory > Ab Initio Electronic Structure Methods
Theoretical and Physical Chemistry > Spectroscopy
Electronic Structure Theory > Density Functional Theory