Recently, multi-label classification algorithms have been increasingly required by a diversity of applications, such as text categorization, web, and social media mining. In particular, these applications often have streams of data coming continuously, and require learning and predicting done on-thefly. In this paper, we introduce a scalable online variational inference based ensemble method for classifying multi-label data, where random projections are used to create the ensemble system. As a second-order generative method, the proposed classifier can effectively exploit the underlying structure of the data during learning. Experiments on several real-world datasets demonstrate the superior performance of our new method over several well-known methods in the literature.