This paper presents a numerical scheme based on Haar wavelet for the solutions of higher order linear and nonlinear boundary value problems. In nonlinear cases, quasilinearization has been applied to deal with nonlinearity. Then, through collocation approach computing solutions of boundary value problems reduces to solve a system of linear equations which are computationally easy. The performance of the proposed technique is portrayed on some linear and nonlinear test problems including tenth, twelfth, and thirteen orders. Further convergence of the proposed method is investigated via asymptotic expansion. Moreover, computed results have been matched with the existing results, which shows that our results are comparably better. It is observed from convergence theoretically and verified computationally that by increasing the resolution level the accuracy also increases.