As the main transportation equipment in ore mining, the wheel drive system of mining trucks plays a crucial role in the transportation capacity of mining trucks. The internal components of the hub drive system are mainly composed of bearings, gears, etc. The vibration signals caused during operation are nonlinear and nonstationary complex signals, and there may be more than one factor that causes faults, which causes certain difficulties for the fault diagnosis of the hub drive system. A fault diagnosis method based on local mean decomposition (LMD) multi-component sample entropy fusion and LS-SVM is proposed to address this issue. Firstly, the LMD method is used to decompose the vibration signals in different states to obtain a finite number of PF components. Then, based on the typical correlation analysis method, the distribution characteristics and correlation coefficients of vibration signals in the frequency domain under different states are calculated, and effective PF multi-component sample entropy features are constructed. Finally, the LS-SVM multi-fault classifier is used to train and test the extracted multi-component sample entropy features to verify the effectiveness of the method. The experimental results show that, even in small-sample data, the LMD multi-component sample entropy fusion and LS-SVM method can accurately extract fault features of vibration signals and complete classification, achieving fault diagnosis of wheel drive systems.