ABSTRACT. Recent advances in the theory of complex symmetric operators are presented and related to current studies in non-hermitian quantum mechanics. The main themes of the survey are: the structure of complex symmetric operators, C-selfadjoint extensions of C-symmetric unbounded operators, resolvent estimates, reality of spectrum, bases of C-orthonormal vectors, and conjugatelinear symmetric operators. The main results are complemented by a variety of natural examples arising in field theory, quantum physics, and complex variables.