Minimizers of functionals of the type $$\begin{aligned} w\mapsto \int _{\Omega }[|Dw|^{p}-fw]\,\textrm{d}x+\int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\frac{|w(x)-w(y)|^{\gamma }}{|x-y|^{n+s\gamma }}\,\textrm{d}x\,\textrm{d}y\end{aligned}$$
w
↦
∫
Ω
[
|
D
w
|
p
-
f
w
]
d
x
+
∫
R
n
∫
R
n
|
w
(
x
)
-
w
(
y
)
|
γ
|
x
-
y
|
n
+
s
γ
d
x
d
y
with $$p, \gamma>1>s >0$$
p
,
γ
>
1
>
s
>
0
and $$p> s\gamma $$
p
>
s
γ
, are locally $$C^{1, \alpha }$$
C
1
,
α
-regular in $$\Omega $$
Ω
and globally Hölder continuous.