Variational Regularization Theory Based on Image Space Approximation Rates
Philip Miller
Abstract:We present a new approach to convergence rate results for variational regularization. Avoiding Bregman distances and using image space approximation rates as source conditions we prove a nearly minimax theorem showing that the modulus of continuity is an upper bound on the reconstruction error up to a constant. Applied to Besov space regularization we obtain convergence rate results for 0, 2, q-and 0, p, p-penalties without restrictions on p, q ∈ (1, ∞). Finally we prove equivalence of Hlder-type variational s… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.