An error analysis of trigonometric integrators (or exponential integrators) applied to spatial semi-discretizations of semilinear wave equations with periodic boundary conditions in one space dimension is given. In particular, optimal second-order convergence is shown requiring only that the exact solution is of finite energy. The analysis is uniform in the spatial discretization parameter. It covers the impulse method which coincides with the method of Deuflhard and the mollified impulse method of García-Archilla, Sanz-Serna & Skeel as well as the trigonometric methods proposed by Hairer & Lubich and by Grimm & Hochbruck. The analysis can also be used to explain the convergence behaviour of the Störmer-Verlet/leapfrog discretization in time. (2010): 65M15, 65P10, 65L70, 65M20.
Mathematics Subject Classification