Cover crops, as either a living plant or mulch, can suppress weeds by reducing weed germination, emergence and growth, either through direct competition for resources, allelopathy, or by providing a physical barrier to emergence. Farmers implementing conservation agriculture, organic farming, or agroecological principles are increasingly adopting cover crops as part of their farming strategy. However, cover crop adoption remains limited by poor and/or unstable establishment in dry conditions, the weediness of cover crop volunteers as subsequent cash crops, and seed costs. This study is the first to review the scientific literature on seed traits of cover crops to identify the key biotic and abiotic factors influencing germination and early establishment (density, biomass, cover). Knowledge about seed traits would be helpful in choosing suitable cover crop species and/or mixtures adapted to specific environments. Such information is crucial to improve cover crops’ establishment and growth and the provision of ecosystem services, while allowing farmers to save seeds and therefore money. We discuss how to improve cover crop establishment by seed priming and coating, and appropriate seed sowing patterns and depth. Here, three cover crop families, namely, Poaceae, Brassicaceae, and Fabaceae, were examined in terms of seed traits and response to environmental conditions. The review showed that seed traits related to germination are crucial as they affect the germination timing and establishment of the cover crop, and consequently soil coverage uniformity, factors that directly relate to their suppressive effect on weeds. Poaceae and Brassicaceae exhibit a higher germination percentage than Fabaceae under water deficit conditions. The seed dormancy of some Fabaceae species/cultivars limits their agricultural use as cover crops because the domestication of some wild ecotypes is not complete. Understanding the genetic and environmental regulation of seed dormancy is necessary. The appropriate selection of cover crop cultivars is crucial to improve cover crop establishment and provide multiple ecosystem services, including weed suppression, particularly in a climate change context.