Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective. Diffusion equation imaging processing is promising to enhance images showing lesions of bone metastasis (LBM). The Perona–Malik diffusion (PMD) model, which has been widely used and studied, is an anisotropic diffusion processing method to denoise or extract objects from an image effectively. However, the smoothing characteristics of PMD or its related method hinder extraction and enhancement of soft tissue regions of medical image such as computed tomography (CT), typically leaving an indistinct region with ambient tissues. Moreover, PMD expands the border region of the objects. A novel diffusion methodology must be used to enhance the LBM region effectively.
Approach. For this study, we originally developed a diffusion equation quantification (DEQ) method that uses a filter function to selectively provide modulated diffusion according to the original locations of objects in an image. The structural similarity index measure (SSIM) and Lie derivative image analysis (LDIA) L-value map were used to evaluate image quality and processing.
Main results. We determined superellipse function with its order n=4 for the LBM region. DEQ was found to be more effective at contrasting LBM for various LBM CT images than PMD or its improved models. DEQ yields enhancement agreeing with the indications of positron emission tomography despite complex lesions of bone metastasis comprising osteoblastic, osteoclastic, mixed tissues, and metal artifacts, which is innovative. Moreover, DEQ retained high quality of image (SSIM > 0.95), and achieved a low mean value of the L-value (< 0.001), indicative of our intended selective diffusion compared to other PMD models.
Significance. Our method improved the visibility of mixed tissue lesions, which can assist computer visional framework and can help radiologists to produce accurate diagnose of LBM regions which are frequently overlooked in radiology findings because of the various degrees of visibility in CT images.
Objective. Diffusion equation imaging processing is promising to enhance images showing lesions of bone metastasis (LBM). The Perona–Malik diffusion (PMD) model, which has been widely used and studied, is an anisotropic diffusion processing method to denoise or extract objects from an image effectively. However, the smoothing characteristics of PMD or its related method hinder extraction and enhancement of soft tissue regions of medical image such as computed tomography (CT), typically leaving an indistinct region with ambient tissues. Moreover, PMD expands the border region of the objects. A novel diffusion methodology must be used to enhance the LBM region effectively.
Approach. For this study, we originally developed a diffusion equation quantification (DEQ) method that uses a filter function to selectively provide modulated diffusion according to the original locations of objects in an image. The structural similarity index measure (SSIM) and Lie derivative image analysis (LDIA) L-value map were used to evaluate image quality and processing.
Main results. We determined superellipse function with its order n=4 for the LBM region. DEQ was found to be more effective at contrasting LBM for various LBM CT images than PMD or its improved models. DEQ yields enhancement agreeing with the indications of positron emission tomography despite complex lesions of bone metastasis comprising osteoblastic, osteoclastic, mixed tissues, and metal artifacts, which is innovative. Moreover, DEQ retained high quality of image (SSIM > 0.95), and achieved a low mean value of the L-value (< 0.001), indicative of our intended selective diffusion compared to other PMD models.
Significance. Our method improved the visibility of mixed tissue lesions, which can assist computer visional framework and can help radiologists to produce accurate diagnose of LBM regions which are frequently overlooked in radiology findings because of the various degrees of visibility in CT images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.