Abstract:We identify continuous real-valued functions on a Tychonoff space X with their (closed) graphs thus allowing for C(X) to naturally inherit the lower Vietoris topology from the ambient hyperspace. We then calculate a bitopological version of tightness using the weak Lindelöf numbers of finite powers of X. We also characterize bitopological versions of countable fan and strong fan tightness of the point-open topology with respect to the lower Vietoris topology on C(X) in terms of suitable covering properties of … Show more
The aim of this paper is to study certain closure-type properties of function spaces over metric spaces endowed with two topologies: the topology of uniform convergence on a bornology and the topology of strong uniform convergence on a bornology.
The aim of this paper is to study certain closure-type properties of function spaces over metric spaces endowed with two topologies: the topology of uniform convergence on a bornology and the topology of strong uniform convergence on a bornology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.