2011
DOI: 10.1007/s00224-011-9321-z
|View full text |Cite
|
Sign up to set email alerts
|

Variations on Muchnik’s Conditional Complexity Theorem

Abstract: Muchnik's theorem about simple conditional descriptions states that for all strings a and b there exists a program p transforming a to b that has the least possible length and is simple conditional on b. In this paper we present two new proofs of this theorem. The first one is based on the on-line matching algorithm for bipartite graphs. The second one, based on extractors, can be generalized to prove a version of Muchnik's theorem for space-bounded Kolmogorov complexity. Another version of Muchnik's theorem i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
23
0
1

Year Published

2012
2012
2019
2019

Publication Types

Select...
5
2
1

Relationship

2
6

Authors

Journals

citations
Cited by 14 publications
(24 citation statements)
references
References 14 publications
0
23
0
1
Order By: Relevance
“…Эта идея была предложена (в другой ситуации и ещё до Мучника) в статье [14], и применена к доказательству теоремы Мучника в [125]. Преимущество такого подхода в том, что можно использовать известные явные конструкции экстракторов и другую тех-нику теории сложности (например, псевдослучайные генераторы, как предложил А. Ромащенко) для доказательства варианта теоремы Мучника, где используется сложность с ограничением на используемую память [123,124].…”
Section: условное кодированиеunclassified
“…Эта идея была предложена (в другой ситуации и ещё до Мучника) в статье [14], и применена к доказательству теоремы Мучника в [125]. Преимущество такого подхода в том, что можно использовать известные явные конструкции экстракторов и другую тех-нику теории сложности (например, псевдослучайные генераторы, как предложил А. Ромащенко) для доказательства варианта теоремы Мучника, где используется сложность с ограничением на используемую память [123,124].…”
Section: условное кодированиеunclassified
“…Both ideas have been used in other secret key agreement protocols. However, their technical implementation in the AIT framework requires specific constructions needed for this setting, such as, to give just one example, prefix extractors, which were first introduced explicitly in [RRV02], and in AIT in [MRS11].…”
Section: And (3) Then With Probability At Leastmentioning
confidence: 99%
“…For every K, n and constant δ , there exists explicit (K, δ )-dispersers G = (L = {0, 1} n , R = {0, 1} m , E ⊆ L × R) in which every node in L has degree D = n2 O((log log n) 2 ) and |R| = αKD n 3 , for some constant α. 3 The key combinatorial object that we use is provided in the following lemma. Lemma 4.…”
Section: Definitionmentioning
confidence: 99%
“…Now, why are dispersers sufficient? The answer, inspired by [3], stems from the idea from [1] to use for this kind of compression graphs that allow on-line matching. These are unbalanced bipartite graphs, which, in their simplest form, have LEFT = {0, 1} n , RIGHT = {0, 1} k+small overhead , and left degree = poly(n), and which permit on-line matching up to size K = 2 k .…”
Section: Introductionmentioning
confidence: 99%