2021
DOI: 10.1007/978-3-030-81508-0_8
|View full text |Cite
|
Sign up to set email alerts
|

Variations on the Post Correspondence Problem for Free Groups

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 9 publications
0
2
0
Order By: Relevance
“…If at least one of g$g$ and h$h$ is injective we get prefixkerfalse(gfalse)prefixkerfalse(hfalse)=false{1false}$\ker (g)\cap \ker (h)=\lbrace 1\rbrace$, so the PCP has the same statement as the classical one (‘is there any x1$x \ne 1$ such that gfalse(xfalse)=hfalse(xfalse)$g(x)=h(x)$?'). However, when neither map is injective, prefixkerfalse(gfalse)prefixkerfalse(hfalse)$\ker (g)\cap \ker (h)$ is always non‐trivial as either Ffalse(normalΣfalse)$F(\Sigma )$ is cyclic, and here all non‐trivial subgroups have non‐trivial intersection, or Ffalse(normalΣfalse)$F(\Sigma )$ is non‐cyclic whence prefixkerfalse(gfalse)prefixkerfalse(hfalse)$\ker (g)\cap \ker (h)$ contains the non‐trivial subgroup false[prefixkerfalse(gfalse),prefixkerfalse(hfalse)false]$[\ker (g), \ker (h)]$ (see [9, Lemma 1]), and so while the non‐triviality of prefixEqfalse(g,hfalse)$\operatorname{Eq}(g, h)$ is established, it does not capture the core of the problem. We therefore quotient out by prefixkerfalse(gfalse)prefixkerfalse(hfalse)$\ker (g)\cap \ker (h)$ as we wish to consider the case when neither map is injective.…”
Section: Pcp For Groupsmentioning
confidence: 99%
See 1 more Smart Citation
“…If at least one of g$g$ and h$h$ is injective we get prefixkerfalse(gfalse)prefixkerfalse(hfalse)=false{1false}$\ker (g)\cap \ker (h)=\lbrace 1\rbrace$, so the PCP has the same statement as the classical one (‘is there any x1$x \ne 1$ such that gfalse(xfalse)=hfalse(xfalse)$g(x)=h(x)$?'). However, when neither map is injective, prefixkerfalse(gfalse)prefixkerfalse(hfalse)$\ker (g)\cap \ker (h)$ is always non‐trivial as either Ffalse(normalΣfalse)$F(\Sigma )$ is cyclic, and here all non‐trivial subgroups have non‐trivial intersection, or Ffalse(normalΣfalse)$F(\Sigma )$ is non‐cyclic whence prefixkerfalse(gfalse)prefixkerfalse(hfalse)$\ker (g)\cap \ker (h)$ contains the non‐trivial subgroup false[prefixkerfalse(gfalse),prefixkerfalse(hfalse)false]$[\ker (g), \ker (h)]$ (see [9, Lemma 1]), and so while the non‐triviality of prefixEqfalse(g,hfalse)$\operatorname{Eq}(g, h)$ is established, it does not capture the core of the problem. We therefore quotient out by prefixkerfalse(gfalse)prefixkerfalse(hfalse)$\ker (g)\cap \ker (h)$ as we wish to consider the case when neither map is injective.…”
Section: Pcp For Groupsmentioning
confidence: 99%
“…One motivation to study the PCP in hyperbolic groups comes from the fact that the PCP for free groups can be traced to Stallings in the 1980s (see [41]), and while recent results settle the PCP for certain classes of free group maps [4,[8][9][10]30], its solubility for general free group maps remains an important open question ( [15,Problem 5.1.4]).…”
mentioning
confidence: 99%