Transformation of Arg to nitric oxide and ornithine (Arg-Orn) constitutes the main route of Arg metabolism in mammals. The primary objective of this work was to determine the effects of inhibiting the Arg-Orn pathway via N ω-hydroxy-nor-l-arginine (nor-NOHA) on health of lactating cows. Furthermore, we also explored the effect of Arg-Orn inhibition on the efficiency of nitrogen utilization to find support for previous research that showed the inhibition of Arg-Orn inhibited milk protein synthesis. Six healthy Chinese Holstein cows of similar body weight (550.0 ± 20 kg), parity (4.0 ± 0), body condition score (3.0 ± 0), milk yield (21.0 ± 1.0 kg), and days in milk (80 ± 2 d) were selected and randomly assigned to 3 treatments in a replicated 3 × 3 Latin square design with 22 d for each period (7 d for infusion and 15 d for washout). The treatments were (1) saline infusion (control); (2) infusion of 125 mg/L of nor-NOHA; and (3) infusion of 125 mg/L of nor-NOHA with 9.42 g/L of Arg. Dry matter intake, apparent digestibility of nutrients, urinary N, N in milk, and blood indices of metabolism and immune function were determined. Compared with the control, the infusion of nor-NOHA had no effect on the concentrations of cholesterol, high-density lipoproteins, IgA, IL-1β, tumor necrosis factor-α, and alanine transaminase. In addition, the dry matter intake, apparent digestibility of N, and the concentration of milk protein N in the Nor-NOHA did not differ from the control; however, the infusion of nor-NOHA and Arg resulted in greater concentrations of high-density lipoprotein, IgA, IL-1β, and tumor necrosis factor-α, and lower concentrations of cholesterol in serum compared with the control. Moreover, the addition of Arg to cows infused with nor-NOHA increased the concentration of nitrate (the indicator of nitric oxide) in serum and was associated with greater milk protein N production due to greater milk yield compared with those infused with nor-NOHA. Overall, the results indicated important roles of Arg in immunity and mammary N utilization, whereas a minor role of the Arg-Orn pathway in these physiologic processes was found.