Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Vasculogenic mimicry (VM) is a recently identified pattern of blood supply to tumor tissue. It has long been considered a functional element in the metastasis and prognosis of malignant tumors. Both Rho GTPase-activating protein 25 (ARHGAP25) and Ras homolog family member A (RhoA) are effective predictors of tumor metastasis. In this study, we examined the expression levels of ARHGAP25 and RhoA and the structure of VM in non-small cell lung cancer (NSCLC). At the same time, we used cytology-related experiments to explore the effect of ARHGAP25 on the migration ability of tumor cells. Furthermore, we analyzed the interaction between the three factors and their association with clinicopathological characteristics and the five-year survival time in patients using statistical tools. Methods A total of 130 well-preserved NSCLC and associated paracancerous tumor-free tissues were obtained. Cell colony formation, wound healing, and cytoskeleton staining assays were used to analyze the effect of ARHGAP25 on the proliferation and migration ability of NSCLC cells. Immunohistochemical staining was used to determine the positivity rates of ARHGAP25, RhoA, and VM. Statistical software was used to examine the relationships between the three factors and clinical case characteristics, overall survival, and disease-free survival. Results Cell colony formation, wound healing, and cytoskeleton staining assays confirmed that ARHGAP25 expression affects the proliferation and migratory abilities of NSCLC cells. ARHGAP25 positivity rates in NSCLC and paracancerous tumor-free tissues were 48.5% and 63.1%, respectively, whereas RhoA positivity rates were 62.3% and 18.5%, respectively. ARHGAP25 had a negative relationship with RhoA and VM, whereas RhoA and VM had a positive relationship (P < 0.05). ARHGAP25, RhoA, and VM affected the prognosis of patients with NSCLC (P < 0.05) according to Kaplan–Meier of survival time and Cox regression analyses. Furthermore, lowering ARHGAP25 expression increased NSCLC cell proliferation and migration. Conclusions ARHGAP25 and RhoA expression is associated with VM and may be of potential value in predicting tumor metastasis, prognosis, and targeted therapy.
Background Vasculogenic mimicry (VM) is a recently identified pattern of blood supply to tumor tissue. It has long been considered a functional element in the metastasis and prognosis of malignant tumors. Both Rho GTPase-activating protein 25 (ARHGAP25) and Ras homolog family member A (RhoA) are effective predictors of tumor metastasis. In this study, we examined the expression levels of ARHGAP25 and RhoA and the structure of VM in non-small cell lung cancer (NSCLC). At the same time, we used cytology-related experiments to explore the effect of ARHGAP25 on the migration ability of tumor cells. Furthermore, we analyzed the interaction between the three factors and their association with clinicopathological characteristics and the five-year survival time in patients using statistical tools. Methods A total of 130 well-preserved NSCLC and associated paracancerous tumor-free tissues were obtained. Cell colony formation, wound healing, and cytoskeleton staining assays were used to analyze the effect of ARHGAP25 on the proliferation and migration ability of NSCLC cells. Immunohistochemical staining was used to determine the positivity rates of ARHGAP25, RhoA, and VM. Statistical software was used to examine the relationships between the three factors and clinical case characteristics, overall survival, and disease-free survival. Results Cell colony formation, wound healing, and cytoskeleton staining assays confirmed that ARHGAP25 expression affects the proliferation and migratory abilities of NSCLC cells. ARHGAP25 positivity rates in NSCLC and paracancerous tumor-free tissues were 48.5% and 63.1%, respectively, whereas RhoA positivity rates were 62.3% and 18.5%, respectively. ARHGAP25 had a negative relationship with RhoA and VM, whereas RhoA and VM had a positive relationship (P < 0.05). ARHGAP25, RhoA, and VM affected the prognosis of patients with NSCLC (P < 0.05) according to Kaplan–Meier of survival time and Cox regression analyses. Furthermore, lowering ARHGAP25 expression increased NSCLC cell proliferation and migration. Conclusions ARHGAP25 and RhoA expression is associated with VM and may be of potential value in predicting tumor metastasis, prognosis, and targeted therapy.
Heterogeneous cancer-associated fibroblasts (CAFs) play important roles in cancer progression. However, the specific biological functions and regulatory mechanisms involved in endometrial cancer have yet to be elucidated. We aimed to explore the potential mechanisms of heterogeneous CAFs in promoting endometrial cancer progression. The presence of melanoma cell adhesion molecule (MCAM; CD146) positive CAFs was confirmed by tissue multi-immunofluorescence (mIF), and fluorescence activated cell sorting (FACS). The biological functions were determined by wound healing assays, tuber formation assays and cord formation assays. The effects of CD146+CAFs on endometrial cancer cells were studied in vitro and in vivo. The expression level of interleukin 10 (IL-10) was measured by quantitative real time polymerase chain reaction (qRT-PCR), western boltting and enzyme linked immunosorbent assays (ELISAs). In addition, the transcription factor STAT3 was identified by bioinformatics methods and chromatin immunoprecipitation (ChIP). A subtype of CAFs marked with CD146 was found in endometrial cancer and correlated with poor prognosis. CD146+CAFs promoted angiogenesis and vasculogenic mimicry (VM) in vitro. A xenograft tumour model also showed that CD146+CAFs can facilitate tumour progression. The expression of IL-10 was elevated in CD146+CAFs. IL-10 promoted epithelial-endothelial transformation (EET) and further VM formation in endometrial cancer cells via the janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) signalling pathway. This process could be blocked by the JAK1/STAT3 inhibitor niclosamide. Mechanically, STAT3 can bind to the promoter of cadherin5 (CDH5) to promote its transcription which may be stimulated by IL-10. We concluded that CD146+CAFs could promote angiogenesis and VM formation via the IL-10/JAK1/STAT3 signalling pathway. These findings may lead to the identification of potential targets for antiangiogenic therapeutic strategies for endometrial cancers.
BackgroundIn the ongoing battle against breast cancer, a leading cause of cancer-related mortality among women globally, the urgent need for innovative prognostic markers and therapeutic targets is undeniable. This study pioneers an advanced methodology by integrating machine learning techniques to unveil a vascular mimicry signature, offering predictive insights into breast cancer outcomes. Vascular mimicry refers to the phenomenon where cancer cells mimic blood vessel formation absent of endothelial cells, a trait associated with heightened tumor aggression and diminished response to conventional treatments.MethodsThe study’s comprehensive analysis spanned data from over 6,000 breast cancer patients across 12 distinct datasets, incorporating both proprietary clinical data and single-cell data from 7 patients, accounting for a total of 43,095 cells. By employing an integrative strategy that utilized 10 machine learning algorithms across 108 unique combinations, the research scrutinized 100 existing breast cancer signatures. Empirical validation was sought through immunohistochemistry assays, alongside explorations into potential immunotherapeutic and chemotherapeutic avenues.ResultsThe investigation successfully identified six genes related to vascular mimicry from multi-center cohorts, laying the groundwork for a novel predictive model. This model outstripped the prognostic accuracy of traditional clinical and molecular indicators in forecasting recurrence and mortality risks. High-risk individuals identified by our model faced worse outcomes. Further validation through IHC assays in 30 patients underscored the model’s extensive applicability. Notably, the model unveiled varying therapeutic responses; low-risk patients might achieve greater benefits from immunotherapy, whereas high-risk patients demonstrated a particular sensitivity to certain chemotherapies, such as ispinesib.ConclusionsThis model marks a significant step forward in the precise evaluation of breast cancer prognosis and therapeutic responses across different patient groups. It heralds the possibility of refining patient outcomes through tailored treatment strategies, accentuating the potential of machine learning in revolutionizing cancer prognosis and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.