In this investigation, the chemical composition of the hydro-distilled essential oil (HD-EO), obtained from the fresh aerial parts (inflorescence heads (Inf), leaves (L), and stems (St)) of Conyza canadensis growing wild in Jordan was determined by GC/MS. Additionally, the methanolic extract obtained from the whole aerial parts of C. canadensis (CCM) was examined for its total phenolic content (TPC), total flavonoids content (TFC), DPPH radical scavenging activity, iron chelating activity and was then analyzed with LC-MS/MS for the presence of certain selected phenolic compounds and flavonoids. The GC/MS analysis of CCHD-EOs obtained from the different aerial parts revealed the presence of (2E, 8Z)-matricaria ester as the main component, amounting to 15.4% (Inf), 60.7% (L), and 31.6% (St) of the total content. Oxygenated monoterpenes were the main class of volatile compounds detected in the Inf-CCHD-EO. However, oils obtained from the leaves and stems were rich in polyacetylene derivatives. The evaluation of the CCM extract showed a richness in phenolic content (95.59 ± 0.40 mg GAE/g extract), flavonoids contents (467.0 ± 10.5 mg QE/ g extract), moderate DPPH radical scavenging power (IC50 of 23.75 ± 0.86 µg/mL) and low iron chelating activity (IC50 = 5396.07 ± 15.05 µg/mL). The LC-MS/MS profiling of the CCM extract allowed for the detection of twenty-five phenolic compounds and flavonoids. Results revealed that the CCM extract contained high concentration levels of rosmarinic acid (1441.1 mg/kg plant), in addition to caffeic acid phenethyl ester (231.8 mg/kg plant). An antimicrobial activity assessment of the CCM extract against a set of Gram-positive and Gram-negative bacteria, in addition to two other fungal species including Candida and Cryptococcus, showed significant antibacterial activity of the extract against S. aureus with MIC value of 3.125 µg/mL. The current study is the first phytochemical screening for the essential oil and methanolic extract composition of C. canadensis growing in Jordan, its antioxidant and antimicrobial activity.