• Circulating chromogranin A and its fragments form a balance of anti-and proangiogenic factors regulated by thrombin-dependent cleavage.• The alteration of this balance could provide a new mechanism for triggering angiogenesis in cancer and other pathophysiologic conditions.Angiogenesis, the formation of blood vessels from pre-existing vasculature, is regulated by a complex interplay of anti and proangiogenic factors. We found that physiologic levels of circulating chromogranin A (CgA), a protein secreted by the neuroendocrine system, can inhibit angiogenesis in various in vitro and in vivo experimental models. Structure-activity studies showed that a functional antiangiogenic site is located in the C-terminal region, whereas a latent anti-angiogenic site, activated by cleavage of Q76-K77 bond, is present in the N-terminal domain. Cleavage of CgA by thrombin abrogated its anti-angiogenic activity and generated fragments (lacking the C-terminal region) endowed of potent proangiogenic activity. Hematologic studies showed that biologically relevant levels of forms of full-length CgA and CgA1-76 (anti-angiogenic) and lower levels of fragments lacking the C-terminal region (proangiogenic) are present in circulation in healthy subjects. Blood coagulation caused, in a thrombin-dependent manner, almost complete conversion of CgA into fragments lacking the C-terminal region. These results suggest that the CgA-related circulating polypeptides form a balance of anti and proangiogenic factors tightlyregulated byproteolysis. Thrombin-induced alteration of this balance could provide a novel mechanism for triggering angiogenesis in pathophysiologic conditions characterized by prothrombin activation. (Blood. 2013;121(2):392-402)
IntroductionAngiogenesis, the process of formation of new blood vessels from pre-existing vessels, is tightly regulated by the coordinated action of anti and proangiogenic factors. [1][2][3] When this balance is disturbed, the result is either excessive or insufficient angiogenesis. Altered angiogenesis, causing excessive or insufficient blood vessel growth, is a common denominator underlying many pathologic conditions, including cardiovascular diseases, macular degeneration, skin diseases, diabetic ulcers, stroke, rheumatoid arthritis, cancer, and many others. [1][2][3] A growing body of evidence suggests that angiogenesis can be regulated by peptides derived from proteins released by neurons and neuroendocrine cells. For example, we have previously shown the recombinant fragment 1-78 of human chromogranin A (CgA), a 439-residue long protein stored in the secretory granules of many endocrine cells, neurons, and cardiomyocytes 4-6 can inhibit angiogenesis in experimental models. 7 Other investigators have shown that a synthetic fragment encompassing residues 352-372 (CgA352-372) can promote angiogenesis. 8 Studies on the mechanism of action have shown that CgA1-78 (also called vasostatin-1) can inhibit endothelial cell proliferation, migration, and invasion induced by vascular endothelial growth factor...