Many adeno-associated virus (AAV) serotypes efficiently transduce the retina when delivered to the subretinal space but show limited success when delivered to the vitreous due to the inner limiting membrane (ILM). Subretinal delivery of AAV serotype 2 (AAV2) and its heparan sulfate (HS)-binding-deficient capsid led to similar expression, indicating transduction of the outer retina occurred by HS-independent mechanisms. However, intravitreal delivery of HS-ablated recombinant AAV2 (rAAV2) led to a 300-fold decrease in transduction compared to AAV2. Fluorescence in situ hybridization of AAV transgenes was used to identify differences in retinal trafficking and revealed that HS binding was responsible for AAV2 accumulation at the ILM. This mechanism was tested on human ex vivo retinas and showed similar accumulation with HS-binding AAV2 capsid only. To evaluate if HS binding could be applied to other AAV serotypes to enhance their transduction, AAV1 and AAV8 were modified to bind HS with a single-amino-acid mutation and tested in mice. Both HS-binding mutants of AAV1 and AAV8 had higher intravitreal transduction than their non-HS-binding parent capsid due to increased retinal accumulation. To understand the influence that HS binding has on tropism, chimeric AAV2 capsids with dual-glycan usage were tested intravitreally in mice. Compared to HS binding alone, these chimeric capsids displayed enhanced transduction that was correlated with a change in tropism. Taken together, these data indicate that HS binding serves to sequester AAV capsids from the vitreous to the ILM but does not influence retinal tropism. The enhanced retinal transduction of HS-binding capsids provides a rational design strategy for engineering capsids for intravitreal delivery. A deno-associated virus (AAV) is a small (25-nm), nonpathogenic virus that has been extensively studied as a vector for gene transfer applications (1-3). The virus consists of two parts: the viral genome and the protein capsid. The viral genome can be largely replaced with a desired transgene to create recombinant AAV (rAAV) vectors used for gene delivery. The protein capsid is responsible for cell attachment and entry via a variety of glycans and cell surface receptors. There are 11 naturally occurring serotypes of AAV, denoted AAV1 to AAV11. Glycans and receptors have been elucidated for several AAV serotypes. Heparan sulfate proteoglycan (HSPG) has been shown to be used for both rAAV2 and rAAV3 cell entry (4). rAAV6 displays dual-glycan interaction with HSPG and sialic acid; however, HSPG binding alone is insufficient for cellular entry (5). Various linkages of sialic acid are important for the transduction of the rAAV1, rAAV4, and rAAV5 serotypes (6,7). N-linked galactose is used for the transduction of the rAAV9 serotype (8). Glycans expressed on the cell surface dictate the tissue and cellular tropism observed with the various AAV capsids. In addition to attachment to these glycans, AAV serotypes interact with cell receptors, including human growth factor rec...