Abstract. Given a spatial location and a set of keywords, a top-k spatial keyword query returns the k best spatio-textual objects ranked according to their proximity to the query location and relevance to the query keywords. There are many applications handling huge amounts of geotagged data, such as Twitter and Flickr, that can benefit from this query. Unfortunately, the state-of-the-art approaches require non-negligible processing cost that incurs in long response time. In this paper, we propose a novel index to improve the performance of top-k spatial keyword queries named Spatial Inverted Index (S2I). Our index maps each distinct term to a set of objects containing the term. The objects are stored differently according to the document frequency of the term and can be retrieved efficiently in decreasing order of keyword relevance and spatial proximity. Moreover, we present algorithms that exploit S2I to process top-k spatial keyword queries efficiently. Finally, we show through extensive experiments that our approach outperforms the state-of-the-art approaches in terms of update and query cost.