Groundwater is an important ecological water source in arid areas. Groundwater depth (GWD) is an important indicator that affects vegetation growth and soil salinization. Clarifying the coupling relationship between vegetation, groundwater, and soil in arid areas is beneficial to the prevention of environmental problems such as desertification and salinization. Existing studies lack research on the water–soil–vegetation relationship in typical areas, especially in shallow groundwater areas. In this study, the shallow groundwater area in Minqin, northwest China, was taken as study area, and vegetation surveys and soil samples collection were conducted. The relationships between vegetation fractional coverage (VFC) and GWD, soil salinity, soil moisture, and precipitation were comprehensively analyzed. The results showed low soil salinity in the riparian zone and high soil salinity in other shallow-buried areas with salinization problems. Soil salinity was negatively correlated with VFC (R = −0.4). When soil salinity >3 g/kg, VFC was less than 20%. Meanwhile, when GWD >10 m, VFC was usually less than 15%. In the areas with soil salinity <3 g/kg, when GWD was in the range of 4–10 m, VFC was positively correlated with soil moisture content (R = 0.99), and vegetation growth mainly depended on surface soil water, which was significantly affected by precipitation. When GWD was less than 4 m, VFC was negatively correlated with GWD (R = −0.78), and vegetation growth mainly relied on groundwater and soil water. There are obvious ecological differences in the shallow-buried areas in Minqin. Hence, it is reasonable to consider zoning and grading policies for ecological protection.