Cover crop use is a well‐established soil conservation technique and has been proven effective for erosion control and soil remediation in many arable systems. Whereas the obvious protection mechanism of cover crops occurs through the canopy, plant roots perform multiple functions. It is important to consider the soil functions delivered by different root systems in order to increase the uptake of cover crops for sustainable soil and water management. A classification of cover crop root systems up to 0.6 m deep based on functional traits will allow us to better study their potential role in soil bio‐engineering, soil structural improvements for hydrological services and soil resource protection. This was a glasshouse experiment, using large 1‐m3 containers filled with loam soil, loose topsoil and compacted subsoil, in which seven cover crop species (oat, rye, buckwheat, vetch, radish, mustard, phacelia) were grown for 90 days. Root cores were taken at the end of the experiment, washed and imaged to determine root traits (total root length density, average root diameter, root specific length and root surface area) for both the topsoil and subsoil layers. Root identity was determined from a distinctive combination of single root traits and related to three soil functional variables, representing soil structural improvement, runoff mitigation and erosion control. The results showed that total root length and root surface area correlate well with aggregate stability and soil macroporosity. Buckwheat, mustard and rye had significantly greater aggregate stability, as well as 10, 8 and 7% greater microporosity, respectively, at the interface with the compacted layer when compared to the control bare soil. Furthermore, average root diameter negatively correlated with soil macroporosity, indicating that cover crops with a fine root system are more beneficial for creating pore‐space than those with thicker taproots. Selecting cover crop species with the right root traits is therefore crucial to improve soil health.
Highlights
Roots of cover crops are a largely unexplored frontier for bio‐engineering of agricultural soils.
Combinations of root traits were identified that most improve soil characteristics.
Cover crops with finer root systems were better at enhancing porosity.
Root length and surface area were most important for enhancing soil structure.