Boreal peatlands are highly important sinks for carbon (C). This function is enabled largely by one peat-forming plant, the Sphagnum moss. In addition to slowing the decomposition by gradually creating ombrotrophic conditions, it gives a shelter for the organisms mitigating the emissions of methane (CH4)-an effective greenhouse gas formed in submerged, anoxic peat layers. These organisms, methane oxidizing bacteria (methanotrophs, MOB), inhabit the dead, water-filled hyaline cells of the Sphagnum and provide the plant carbon dioxide (CO2) derived from the CH4 oxidation. While several studies have confirmed the presence of Sphagnum-associated methanotrophs (SAM), it is still unclear how dependent they are on the mosses and how environmental conditions affect their community composition and activity. This thesis evaluated SAM dynamics in the different stages of peatland development on both pristine and disturbed areas. Studies were based mainly on molecular methods, targeting the MOB-specific pmoA gene, and laboratory incubations, including stable isotope probing. In the first study, the connection between the SAM and the mosses was assessed by testing whether the SAM will disperse through the water phase. This trait, considered to represent a facultative symbiosis, was demonstrated in two experiments. In the field, mosses inactive in CH4 oxidation were transplanted next to active ones. Within a month, SAM communities of the neighboring mosses become more similar. The water-based colonization was further confirmed by bathing inactive mosses in flark pore water that showed high CH4 oxidation activity. Within just 11 h, activity was induced and the SAM abundance significantly increased in the treated mosses. The other two studies revealed similar SAM community composition patterns on a pristine chronosequence and on a gradient of re-vegetating cutover peatlands. Instead of the Sphagnum species, the general environmental conditions seemed to control the SAM community composition. Different types of SAM seemed to have their preferred environmental niches, with the type Ia MOB present and active especially in the young succession stages and the type II MOB in the older, hydrologically more stable stages. Despite the community differences, the potential CH4 oxidation did not differ along the gradients, suggesting functional redundancy. Only some drier bog samples did not show any detectable CH4 oxidation, demonstrating the regulatory role of the water table level on the SAM activity. The peat layers of the cutover gradient showed similar MOB community patterns but the potential CH4 oxidation increased with succession. T h e a b i l i t y t o d i s p e r s e t h r o u g h t h e w a t e r p r o v i d e s a r e c o v e r y m e c h a n i s m f r o m disturbances such as droughts, which are predicted to increase with climate warming. In addition, the diversity and functional redundancy of the SAM communities enhance the resilience of this important CH4 biofilter formed by the living Sphagnum mosses. The potential SAM activity...