The frequency-dependent phase velocity, attenuation coefficient, and backscatter coefficient were measured from 0.8 to 1.2 MHz in 24 water-saturated nickel foams as trabecular-bone-mimicking phantoms. The power law fits to the measurements showed that the phase velocity, the attenuation coefficient, and the backscatter coefficient were proportional to the frequency with exponents n of 0.95, 1.29, and 3.18, respectively. A significant linear correlation was found between the phase velocity at 1.0 MHz and the porosity. In contrast, the best regressions for the normalized broadband ultrasound attenuation and the backscatter coefficient at 1.0 MHz were obtained with the polynomial fits of second order.