The use of natural and artificial barriers to mitigate pesticide drift from agricultural and forest applications is discussed. This technique has been considered as an alternative to current methods at a time when environmental concerns are under great public scrutiny. There has been a variety of research experiments on this subject from New Zealand to The Netherlands which have documented reductions in spray drift of up to 80-90%. However, there are still enormous data gaps to utilize this method accurately. The aerodynamic factors of wind barriers and shelter effects on crop growth and yield have been well investigated. In contrast, some of the important aspects of drift mitigation, e.g. porosity and turbulence, have been difficult to obtain and no standard methodologies are currently available to evaluate and classify windbreaks and shelterbelts or to determine their efficiency in reducing drift. Thus there is a significant opportunity to incorporate windbreaks into the tool set of drift mitigation tactics. Government policies, initiatives, legislation, etc, which currently address water quality, BMP, stewardship, buffers, etc, are issues which so far have not included windbreaks as a valuable drift mitigation strategy.