The effect of background turbulence on a turbulent jet was investigated experimentally. The primary objective of this work was to study the effect of different levels of the background turbulence on the dynamics and mixing of an axisymmetric turbulent jet at different Reynolds numbers. The secondary objective, which arose during the experiments, was to improve the acoustic Doppler velocimetry measurements which were found to be inaccurate when measuring turbulence statistics.In addition to acoustic Doppler velocimetry (ADV), flying hot-film anemometry was employed in this study. To move the hot-film probe at constant speeds, a high precision traversing mechanism was designed and built. A data acquisition system and LabVIEW programs were also developed to acquire data and control the traversing mechanism. The experiments started by benchmarking the two measurement techniques in an axisymmetric turbulent jet. Comparing the results with those of the other studies validated the use of flying hot-film anemometry to estimate the mean and the root-mean square (RMS) velocities.The experiments also validated the use of ADV for measurement of the mean velocities (measured in three Cartesian directions) and the RMS velocity (measured in the z-direction only). RMS velocities measured by the ADV along the x-and y-direction of the probe were overestimated.Attempts to improve the turbulence statistics measured by the ADV using the post-processing and noise-reduction methods presented in the literature were undertaken. However, the RMS velocities remained higher than the accepted values. In addition, a noise-reduction method was presented in this study which reduced the RMS velocities down to the accepted values. It was also attempted to relate Doppler noise to current velocity, and thus improve the results by iv subtracting the Doppler noise from the measured RMS velocities in the jet. However, no relationship was found between the Doppler noise and the mean velocity.The effect of different levels of background turbulence on the dynamics and mixing of an axisymmetric turbulent jet at different Reynolds numbers was then investigated. The background turbulence was generated by a random jet array. To confirm that the turbulence is approximately homogeneous and isotropic and has a low mean flow, the background flow was first characterized. Velocity measurements in an axisymmetric jet issuing into two different levels of background turbulence were then conducted. Three different jet Reynolds