Velocity Reconstruction in Puffing Pool Fires with Physics-Informed Neural Networks
Michael Philip Sitte,
Nguyen Anh Khoa Doan
Abstract:Pool fires are canonical representations of many accidental fires, which can exhibit an unstable unsteady behaviour, known as puffing, which involves a strong coupling between the temperature and velocity fields. Despite their practical relevance to fire research, their experimental study can be limited due to the complexity of measuring relevant quantities in parallel. In this work, we analyse the use of a recent physics-informed machine learning approach, called Hidden Fluid Mechanics (HFM), to reconstruct u… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.