Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause explosive outbreaks of a febrile, arthritic/arthralgic disease usually lasting weeks to months, and in rare cases, more than a year. In 2004, the largest ever CHIKV outbreak began in Kenya, spreading to islands of the Indian Ocean, India, South East Asia and major outbreaks have recently occurred in the South Pacific Islands and the Caribbean.The host type I interferon (IFN) response is crucial for effective control of CHIKV infection.Herein, the dynamics, source and responses generated by the type I IFNs following CHIKV infection were investigated. RNASeq was undertaken to examine, in detail, the nature of the type I IFN responses generated in the feet and inguinal lymph nodes of mice following CHIKV infection at days 2 and 7 post-infection. High quality sequencing data was generated from III host and viral poly-adenylated RNA, permitting investigation of low level gene transcription from both sources, and the identification of novel genes/transcripts, in addition to analysis of differential gene expression.Investigation of host transcriptional activity revealed a type I IFN dominated immune response, in spite of a low induction of type I IFN mRNA transcripts at day 2 and an absence of type I IFN mRNA induction on day 7. Many type I IFN-regulated genes, including IRF7, remained up-regulated in the feet at day 7, suggesting type I IFNindependent mechanisms for maintenance of type I IFN-regulated gene expression. Six novel IRF3 isoforms and a potentially novel protein coding gene were also identified.RNA-Seq analysis of CHIKV transcriptional activity reflected the known CHIKV replication kinetics, in which virus replicates in the joints, and spreads to the draining lymph nodes, with viral titres peaking at day 2 and largely resolving at day 7. Assessment of mutations within the CHIKV genome showed an accumulation with time, with error accumulation higher in the lymph nodes than in the feet. These studies represent the first deep sequencing analysis of CHIKV genomes in tissues.The findings in this thesis substantially add to our knowledge of the role and function of the immune response after CHIKV, illustrating for the first time that type I IFNs protect against haemorrhagic shock and that expression of type I IFN inducible genes is maintained well after type I IFN induction has waned.