Signal-averaged ECG (SAECG) is a high-resolution, noninvasive electrocardiographic method enabling detection of late ventricular potentials (LVP), which are low-amplitude and high-frequency signals, predicting reentry ventricular arrhythmias, and sudden cardiac death (SCD). Three criteria are used to detect late ventricular potentials as follows: signal-average ECG QRS duration (SAECG-QRS), the duration of the terminal part of the QRS complex with an amplitude below 40 μV (LAS40) and the root mean square (RSM) signal amplitude of the last 40 ms of the signal < 20 μV (RMS40). Late ventricular potentials can be detected not only at the end of a QRS complex but also as intra-QRS (IQRS) potentials. Signal-averaged ECG was modiied to enable the analysis of the P-wave and to detect atrial late potentials (ALPs), low-amplitude potentials at the terminal part of the iltered P-wave, and predictors of atrial ibrillation (AF). Late atrial and ventricular potentials originate from areas of delayed, fragmented, and heterogenous conduction within atrial or ventricular myocardium. This chapter reviews the most important mechanisms explaining the occurrence of late ventricular, intra-QRS, and atrial potentials; their predictive value for arrhythmia, focusing on recent clinical data, long-term follow-up, and outcome; and analysis of SAECG variables in cardiac and noncardiac diseases.