2020
DOI: 10.1109/jsyst.2019.2913080
|View full text |Cite
|
Sign up to set email alerts
|

Venue2Vec: An Efficient Embedding Model for Fine-Grained User Location Prediction in Geo-Social Networks

Abstract: Geo-Social networks (GSN) significantly improve location-aware capability of services by offering geo-located content based on the huge volumes of data generated in the GSN. The problem of user location prediction based on user generated data in GSN has been extensively studied. However, existing studies are either concerning predicting users' next check-in location or predicting their future check-in location at a given time with coarse granularity. An unified model that can predict both scenarios with fine g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
4
1

Relationship

1
8

Authors

Journals

citations
Cited by 23 publications
(8 citation statements)
references
References 38 publications
0
7
0
1
Order By: Relevance
“…Al mismo tiempo, los dataset rara vez se dejan disponibles para la comunidad científica debido a los problemas de privacidad previamente mencionados. En este sentido, muchos autores han utilizado contenido público geo-localizado extraído de redes sociales, especialmente check-ins realizados por los usuarios [22] [23] [24]. Sin embargo, estos datos no son representativos, ya que no se puede conocer cuánto tiempo pasan los usuarios en cada lugar, además de que los usuarios normalmente omiten hacer check-ins en lugares cotidianos (como la casa o el trabajo) o embarazosos (como lugares de comida rápida) [25].…”
Section: Motivaciónunclassified
“…Al mismo tiempo, los dataset rara vez se dejan disponibles para la comunidad científica debido a los problemas de privacidad previamente mencionados. En este sentido, muchos autores han utilizado contenido público geo-localizado extraído de redes sociales, especialmente check-ins realizados por los usuarios [22] [23] [24]. Sin embargo, estos datos no son representativos, ya que no se puede conocer cuánto tiempo pasan los usuarios en cada lugar, además de que los usuarios normalmente omiten hacer check-ins en lugares cotidianos (como la casa o el trabajo) o embarazosos (como lugares de comida rápida) [25].…”
Section: Motivaciónunclassified
“…Early geographic representation models started with a specific application, then constructed representations useful for their applications. These include [Eisenstein et al, 2010, Cocos andCallison-Burch, 2017] for topical variation in text, [Yao et al, 2017] to predict land use, [Xu et al, 2020] for user location prediction, and [Jeawak et al, 2019, Yin et al, 2019 for geo-aware prediction. More recent approaches aim to create general geographic embeddings.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Early geographic representation models started with a specific application and then constructed representations useful for their applications. These include Eisenstein et al (2010) and Cocos and Callison-Burch (2017) for topical variation in text, Yao et al (2017) to predict land use, Xu et al (2020) for user location prediction and Jeawak et al (2019) and Yin et al (2019) for geoaware prediction. More recent approaches aim to create general geographic embeddings.…”
Section: Introductionmentioning
confidence: 99%