Apoptosis is a conserved homeostatic process critical for organ and tissue morphogenesis, development, and senescence. This form of programmed cell death also participates in the etiology of several human diseases including cancer, neurodegenerative, and autoimmune disorders. Although the signaling pathways leading to the progression of apoptosis have been extensively characterized, recent studies highlight the regulatory role of changes in the intracellular milieu (permissive apoptotic environment) in the efficient activation of the cell death machinery. In particular, glutathione (GSH) depletion is a common feature of apoptotic cell death triggered by a wide variety of stimuli including activation of death receptors, stress, environmental agents, and cytotoxic drugs. Although initial studies suggested that GSH depletion was only a byproduct of oxidative stress generated during cell death, recent discoveries suggest that GSH depletion and post-translational modifications of proteins through glutathionylation are critical regulators of apoptosis. Here, we reformulate these emerging paradigms into our current understanding of cell death mechanisms. Apoptosis or programmed cell death is a ubiquitous homeostatic process involved in numerous biological systems. Under physiological conditions it is critical not only in the turnover of cells in tissues but also during normal development and senescence. Moreover, its deregulation has been widely observed to occur as either a cause or consequence of distinct pathologies including cancer, autoimmune, and neurodegenerative diseases. Apoptosis is a highly organized program induced by a myriad of stimuli that are characterized by the progressive activation of precise pathways leading to specific biochemical and morphological alterations in individual cells without involving an inflammatory response. Early stages of apoptosis are characterized by initiator caspase activation, cell shrinkage, loss of plasma membrane lipid asymmetry, and chromatin condensation. The execution phase of apoptosis is characterized by activation of executioner caspases and endonucleases, apoptotic body formation, and cell fragmentation 1 (Figure 1). Interestingly, recent studies have shown that changes in the intracellular milieu of the cells, such as alterations in the redox environment, are important regulators of the progression to apoptosis. 2 These discoveries have lead to the concept of a permissive apoptotic environment necessary for the activation of the proper signaling pathways regulating apoptosis. Glutathione (GSH) depletion is an early hallmark in the progression of cell death in response to a variety of apoptotic stimuli in numerous cell types 3,4 (Figure 2), although the exact role of GSH depletion in apoptosis is still controversial. We review recent data that show new insights into the understanding of the causes and consequences that alterations in the redox environment of the cell have on apoptosis.The Role of GSH in the Regulation of Apoptosis GSH synthesis, depletion, and apopt...