The biodiversity of the bacterium Pseudomonas aeruginosa in an aquatic environment (the Woluwe River, Brussels, Belgium) was analysed. Surface water was sampled bimonthly over a 1-year period (2000-2001) at seven sites evenly dispersed over the river. Total bacterial counts were performed and P. aeruginosa strains were isolated on a selective medium. A weighed out sample of 100 randomly chosen presumptive P. aeruginosa isolates was further analysed. A set of data consisting of the nucleotide sequence of the oprL gene, a DNA-based fingerprint (amplified fragment length polymorphism, AFLP), serotype, pyoverdine type and antibiogram (MICs of 21 clinically relevant antibiotics) was assembled. These data were integrated with those previously obtained for 73 P. aeruginosa clinical and environmental isolates collected across the world. The combined results were analysed and compared using biological data analysis software. Our findings indicate a positive relationship between the extent of pollution and the prevalence of P. aeruginosa. Surprisingly, the Woluwe River P. aeruginosa community was almost as diverse as the global P. aeruginosa population. Indeed, the Woluwe River harboured members of nearly all successful clonal complexes. With the exception of one multidrug-resistant (MDR) strain, belonging to a ubiquitous and clinically relevant serotype O11 clone, antibiotic resistance levels were relatively low. These findings illustrate the significance of river water as a reservoir and source of distribution of potentially pathogenic P. aeruginosa strains and could have repercussions on antinosocomial infection strategies.